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An adaptive-learning model predictive control (AL-MPC) framework is proposed for incorporating disturbance
prediction, model uncertainty quantification, pattern learning, and recursive subspace identification for use in
controlling complex dynamic systems with periodically recurring large random disturbances. The AL-MPC inte-
grates online learning from historical data to predict the future evolution of the model output over a specified
horizon and proactively mitigate significant disturbances. This goal is accomplished using dynamic regularized
latent variable regression (DrLVR) approach to quantify disturbances from the past data and forecast their future
progression time series. An enveloped path for the future behavior of the model output is extracted to further
enhance the robustness of the closed-loop system. The controller set-point, penalty weights of the objective func-
tion, and constraints criteria can be modified in advance for the expected periods of the disturbance effects. The
proposed AL-MPC is used to regulate glucose concentration in people with Type 1 diabetes by an automated in-
sulin delivery system. Simulation results demonstrate the effectiveness of the proposed technique by improving
the performance indices of the closed-loop system. The MPC algorithm integrated with DrLVR disturbance pre-
dictor has compared to MPC reinforced with dynamic principal component analysis linked with K-nearest neigh-
bors and hyper-spherical clustering (k-means) technique. The simulation results illustrate that the AL-MPC can
regulate the glucose concentrations of people with Type 1 diabetes to stay in the desired range (70-180) mg/dL
84.4% of the time without causing any hypoglycemia and hyperglycemia events.

© 2020

1. Introduction

Data analytics, machine learning (ML), and artificial intelligence (AI)
have extended closed-loop control performance in complex systems.
Our earlier work leveraged knowledge-based systems (KBS) operating
for retuning or restructuring control systems in real-time (Basila Jr,
Cinar, & Stefanek, 1989; Kendra, Basila, & Cinar, 1997). The ob-
ject-rule hybrid KBS recognized when the control system would have
degradation in performance as process operating conditions changed,
and modified the controller automatically (Basila Jr et al., 1989).
This framework was extended to supervise multivariable system op-
eration and used robust control techniques to retune or re-
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structure the control system automatically (Kendra, Basila, & Cinar,
1994; 1997). Multivariate statistical techniques were linked with KBS
to integrate multivariate process monitoring and fault diagnostics by us-
ing G2 by Gensym, Inc. (Gensym, 1996), a commercial real-time KBS
development system for process operations (Tatara & Cinar, 2002).
This framework was extended to control system performance assessment
and modification (Schifer & Cinar, 2004). The advent of agent-based
systems enabled distributed AI implementation, leading to hierarchi-
cal agent-based supervision systems with distributed monitoring, diag-
nosis, and control functionality to supervise and regulate distributed
processes for comprehensive multi-layered monitoring, diagnosis, and
control unit, section and plant level operation (Perk, Shao, Teymour,
& Cinar, 2012; Perk, Teymour, & Cinar, 2011; Tatara, North,
Hood, Teymour, & Cinar, 2005). The data analytics, ML, and Al expe-
rience we gained in this journey provided the opportunity to apply these
techniques to automated drug delivery, focusing on automated insulin
delivery to people with diabetes with a multivariable artificial pancreas
(mAP).
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The control of complex systems with nonlinear structure, unmod-
eled dynamics, and unknown time-varying parameters is challenging.
The presence of measurement errors and artifacts, unmeasurable and un-
known disturbances, and time-varying delays provide additional obsta-
cles. Control system formulations based on time-invariant models can-
not accurately capture these process dynamics and control them effec-
tively. Hence, the effectiveness of non-adaptive controllers is question-
able when such systems are subjected to large-magnitude disturbances
while their operating points are varying over broad regions. To address
this issue, adaptive system identification was widely used to update the
controller parameters based on the identified model recursively. The
closed-loop implementation of system identification has shown to be
rather tricky due to the existence of the correlation between input and
unmeasurable noise disturbances (Lennart, 1999). In recent years, sub-
space identification techniques have attracted attention over error pre-
diction-based techniques due to their ability to identify minimal models
(Lennart, 1999; Verhaegen, 1993). Chou and Verhaegen (1997)
also addressed the problem of identifying multivariable finite-dimen-
sional linear time-invariant systems from open- or closed-loop data and
with the presence of correlation in the noise processes. The advances in
system identification for closed-loop data were achieved by utilizing the
principal component analysis to consistently identify a subspace-based
model from the closed-loop input-output data subject to errors-in-vari-
ables (Wang & Qin, 2002). However, identified models from subspace
systems identification algorithms are not as accurate as those estimated
from the error prediction methods (Qin, 2006). Hence, incorporating
auxiliary methods such as latent variable-based regression or unsuper-
vised learning methods can significantly enhance the performance of the
output predictions and, consequently, the effectiveness of the controller.

Model predictive control (MPC) gained popularity in many appli-
cations due to its inherent ability to efficiently handle complex multi-
variable systems and constraints (Ganesh, Edgar, & Baldea, 2016;
Garcia, Prett, & Morari, 1989; Garcia-Tirado, Corbett, Boiroux,
Jorgensen, & Breton, 2019; Hajizadeh, Rashid, & Cinar, 2019b;
Mayne, 2014; Mesbah, Paulson, Lakerveld, & Braatz, 2017; Mo-
harir, Pourkargar, Almansoori, & Daoutidis, 2018; Perea-Lopez,
Ydstie, & Grossmann, 2003; Rawlings & Mayne, 2009; Zavala &
Biegler, 2009). MPC algorithms cast an optimization problem to es-
timate the future evolution of system outputs and minimize an objec-
tive function over a finite-time horizon by using a dynamic model of the
process and constraints. The optimal values of the manipulated variables
with respect to the specified performance index are determined and im-
plemented. MPC formulations are not restricted by the type of model,
objective function, or constraints. However, model mismatch, the formu-
lation of the objective function, system constraints, and unknown ran-
dom disturbances affect the performance of MPC (Forbes, Patward-
han, Hamadah, & Gopaluni, 2015; Kumar et al., 2019a; 2018;
2019b).

In standard implementation of MPC, the deterministic representa-
tion of random disturbances is used to calculate control actions. In
other words, the projection acts as a summarizing statistic (usually ex-
pected value) of the entire disturbance uncertainty space. Since ordi-
nary MPC is not able to handle disturbances that cannot be well-rep-
resented by most likely forecasts, stochastic MPC (sMPC) formulations
have been developed in recent years (Kumar et al., 2019a; 2018;
2019b; Mesbah, 2016). sMPC utilizes historical data to form un-
certainty characterizations of the model disturbances. These charac-
terizations are used to generate the most probable scenarios for the
evolution of the outputs over the specified prediction horizon. Hence,
sMPC presents a methodical framework to guarantee control objectives
and address probabilistic constraints caused by uncertainties (Mesbah,
2016). Augmented past data can be leveraged into probabilistic learn-
ing techniques, namely maximum likelihood, to be incorporated with

MPC to forecast and generate different scenarios (Ripaccioli, Bernar-
dini, Di Cairano, Bemporad, & Kolmanovsky, 2010). In order to
improve the output forecasts over the prediction horizon, most probable
scenarios should be generated in the controller for process disturbances.
The objective is to quantify significant disturbances and forecast their
future occurrence by using historical data and ML techniques. Moreover,
the set-point of the controller (reference trajectory), adjustable weights
in the objective function, and the system constraints can be appropri-
ately modified in advance for the expected duration of the disturbance
effects JHajizadeh, Askari, Kumar, Zavala, and Cinar, 2020 (in
press; Hajizadeh et al., 2019a).

In this work, data analytics, ML, and Al are integrated with adap-
tive MPC to regulate a nonlinear process with time-varying parameters
subject to periodic large magnitude disturbances. A novel approach is
proposed to extract information from historical data and predict likely
disturbances and their characteristics, followed by feeding the refined
knowledge to our adaptive MPC based on recursively updated models
and dynamically adjustable constraints. Disturbance prediction based on
dynamic regularized latent variable regression (DrLVR) has been uti-
lized for disturbance forecasting, uncertainty quantification, and the sys-
tem output prediction from periodic historical data. Latent variable re-
gression (LVR) a statistical approach for latent structure extraction. It
aims to establish a relationship between variables in such a way that
the maximum correlation across two sets of measured variables and the
variation of each component is obtained. Hence, LVR takes into account
the benefits of partial least squares regression (PLSR) and canonical cor-
relation analysis (CCA) (Loehlin & Beaujean, 2016; Velu & Reinsel,
2013; Zhou, Li, Song, & Qin, 2016; Zhu, Qin, & Dong, 2020).
Based on the method suggested in Zhu, Liu, and Qin (2017) for ex-
tracting the inherent dynamic structures in the data by using dynamic
inner principal component analysis (DPCA), a latent variable-based ap-
proach that generates a vector autoregressive (VAR) model from the
lagged matrices of input and output variables was proposed (Zhu et al.,
2020). DrLVR is robust to co-linearity between the variables of process
data and singularity issues in calculating the inverse of the squared
process data matrix. Dynamic inferential monitoring with DPCA (Zhu
et al., 2017) was proposed for monitoring the future process variables
and fault diagnosis before adjusting the process variables. Historical
data can also be used to identify the behaviors and patterns of the un-
derlying system for control system adjustment. Incorporating the online
prediction of unknown disturbances from the historical data using Dr-
LVR can improve the control system performance by mitigating the ef-
fects of impending disturbances more effectively.

A qualitative trend analysis (QTA) method based on outputs mea-
surements is also used to identify rapid divergences from the desired tra-
jectories stemming from significant disturbances in real-time (Cheung
& Stephanopoulos, 1990; Maurya, Rengaswamy, & Venkatasubra-
manian, 2005; Samadi et al., 2018; 2017). QTA feature extraction
scheme provides information about the rate and the shape of variations
in outputs measurements to adjust the controller when the presence of
significant disturbances is detected (Hajizadeh et al., 2019a).

The performance of the proposed approach is tested by regulat-
ing the blood glucose concentrations (GC) in people with Type 1 di-
abetes (T1D) by automated insulin delivery with a multivariable arti-
ficial pancreas (mAP) system (Hajizadeh et al., 2019b; Hajizadeh
et al., 2019c; Reddy et al., 2016; Thabit & Hovorka, 2016). The
mAP receives subcutaneous GC data from a continuous glucose moni-
toring (CGM) system and physiological data from a wristband with sev-
eral sensors. Insulin doses recommended by the mAP are infused to sub-
cutaneous tissue by an insulin pump (Fig. 1). The wristband sensors
have a negligible delay with respect to GC readings. CGM reports blood
GC with 5-10 min of delay caused by blood diffusion from the vascu-
lar system to subcutaneous tissue. The delay in insulin action can be
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Fig. 1. The mAP with AL-MPC for the regulation of GC of people with T1D (Hajizadeh, Samadi, Sevil, Rashid, & Cinar, 20194d).

20-40 min from the infusion time by the pump. Biological processes are
complex dynamical systems with many uncertainties and significant ex-
ogenous disturbances that render their modeling and control a challeng-
ing task(Sevil et al., 2019; 2020). The human body, a time-varying
system with nonlinear behavior, is affected by several random and un-
known disturbances. Its representation with fixed-parameter linear mod-
els and regulation with controllers that use such models had limited suc-
cess.

Automated insulin delivery systems are expected to regulate GC to
keep it in the normal (euglycemic) range (70-180 mg/dL), and recent
clinical experiments reported that the GC is kept in this range about
70% of the time with fewer hypoglycemic (BC < 70md/dL) and hy-
perglycemic (GC > 180 md/dL) events compared to manual insulin ad-
justments by the user. Large periodic disturbances such as meals and
physical activity can deteriorate the controller performance and cause
hypoglycemia or hyperglycemia. Meals increase glucose levels while the
effects of physical activities depend on the type, intensity, and dura-
tion of the activity. Low- and medium-intensity aerobic physical ac-
tivities increase insulin sensitivity and cause rapid reductions in GC,
and can activate counter-regulatory hormones (Breton, 2008; Galas-
setti & Riddell, 2013; Riddell & Perkins, 2009; Zecchin et al.,
2013). Nevertheless, high-intensity exercise may cause hyperglycemia.
The mAP framework enabled the use of physiological signals to detect
the presence of physical activities and estimate their types and inten-
sities. Hence, physical activities become measurable disturbances and
provide feedforward control. Thus, mAP has a better ability to avoid
hypoglycemia or hyperglycemia as it can detect physical activity from

the measured physiological variables (Sevil et al., 2020; Turksoy,
Bayrak, Quinn, Littlejohn, & Cinar, 2013a; Turksoy, Quinn, Lit-
tlejohn, & Cinar, 2013b), well before the effect of physical activities
manifest itself in the CGM data. We have also developed meal detection
and bolus-insulin-infusion computation algorithms and integrated them
to the mAP system.

The performance of the mAP controller can be further improved by
long-horizon prediction of likely disturbances to make the controller
“proactively” regulate the GC in addition to “actively” administering
basal and bolus insulin the adaptive MPC of the mAP. Disturbance (meal
and physical activity) prediction over longer time horizons is achieved
by data analytics, and ML of historical data. These predictions are then
incorporated into the adaptive MPC to develop an mAP with a learning
system, which is the topic of this work. This system is called the adap-
tive learning MPC (AL-MPC), and its modules are outlined in Fig. 1.

The main contributions of this study are:

Historical data analytics with a DrLVR algorithm to estimate the fu-
ture evolution of the process output with respect to estimated dis-
turbances on a specified long prediction horizon. Upper and lower
bounds of these disturbances and their expected values and times of
occurrence are predicted.

e Developing a method for constructing an enveloped path of future val-
ues of outputs and embedding into the optimization problem in order
to further enhance the robustness of the closed-loop system against
worst case scenarios.
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® Incorporating criteria and algorithms in MPC for modifying setpoint
values and penalty weights in the optimization problem over the pre-
diction horizon. This modification better addresses the delayed feed-
back response of the closed-loop system and improves its performance
in the presence of time-varying delay.

The performance of the mAP with AL-MPC is evaluated and illus-
trated with simulations conducted by using a multivariable glucose-in-
sulin-physiological variables simulator (mGIPsim) for T1D developed at
Illinois Institute of Technology (Rashid et al., 2019). This unique sim-
ulator provides, in addition to GC, physiological variables that represent
some of the wristband signals and energy expenditure (EE) estimates de-
rived from wristband signals as outputs, enabling testing of the mAP in
silico. Simulation results show a significant improvement in the perfor-
mance of the mAP system with respect to an MPC without the learning
ability, and the proposed algorithm illustrates potential progress in the
development of fully automated mAP system.

The remainder of this paper is structured as follows. Recursive pre-
dictor-based subspace identification (RPBSID), variable prediction us-
ing DrLVR, and adaptive-learning model predictive control (AL-MPC)
are described and discussed in the Problem Formulation and Methods
section. Simulation results with mGIPsim are presented in the Results
section. The interpretation and comparison of the results with various
control systems are provided in the Discussion section. Conclusions are
stated in the last section.

2. Problem formulation and methods

This section presents a summary of the recursive subspace identifi-
cation method for adaptively identifying state-space dynamics, the fore-
cast of the process disturbances using the DrLVR technique, and the for-
mulation of the AL-MPC.

2.1. Recursive subspace model identification

Extracting a reliable and stable model is crucial for designing the
MPC controller in the insulin delivery system. A first-principles compart-
ment model known as Hovorka’s model, is widely used to describe the
insulin-glucose dynamics in people with T1D. The nonlinear dynamic
model consists of nine ordinary differential equations that model the GC
dynamics, the subcutaneous insulin injection, and the dynamic of glu-
cose transport from plasma to interstitial (subcutaneous) tissues (Hov-
orka et al., 2004).

A predictor-based subspace identification method is employed to es-
timate the behavior of glucose-insulin dynamics in a time-varying lin-
ear model format. The identification algorithm is incorporated with
the constrained optimization problem to ensure the stability of the
identified model (Hajizadeh, Rashid, & Cinar, 2018a; Hajizadeh
et al., 2018b). The recursive system identification technique provides a
time-varying stable state-space model and updates its parameters when
new CGM data are received (5 min sampling time). By integrating the
time-varying linear model with a physiological compartment dynamics
(Hajizadeh et al., 2018a), the dynamic model of the system can be
written as:

Xy = Apxp_y + By + o
Vi = G+ Dy + vy @

where x; € R™, y, € R™, u, € R™, w; € R™, and v, € R" represent
state variables, the model output, input variables, zero-mean Gauss-
ian random process and measurement noise vectors, respectively. The
time-varying matrices A, € ROw%), B, e R(wxm), C, € R (mxn)
D, € R(w*m) are also the dynamic state, input, output, and direct
feed-through matrices which are updated at each sampling time. In Eq.
(1), CGM is the output variable, injected insulin information (both basal
and bolus insulin infusion), estimation of the meal effect, and physio-

logical variables are inputs that indicate physical activity (
u, = [Insk,Mealk,MET k]). Metabolic equivalent of task (MET) value de-
notes energy expenditure and represents the metabolic equivalent of
the activity. The amount of insulin in the bloodstream, which is called
plasma insulin concentration (PIC), is one of the state variables of the
state-space model (1). Due to medical considerations,the PIC constraints
are defined in the objective function to guarantee that a safe amount of
insulin circulating in the bloodstream. Using Kalman filter representa-
tion, the identified glycemic model for use in adaptive MPC can be rep-
resented in the following state-space form:

Y1 = AR oyt + Bty
Xpe = Xpk-1 T Kb ri )
Ve = CXppor + Dy + Y

where vector Xy, € RO is the a posteriori estimated state variables
and K, € R(wm) denotes the optimal Kalman filter gain, contributing
the correction term added to the estimated state variables. Vi € R™ is
the error estimation of the output yx. The time-varying estimation of Ay,
By, Ci, Dy, and Kalman gain Kj are obtained by solving least squares op-
timization problem as detailed in Appendix A and Appendix B.

2.2. Variable prediction using dynamic latent variable model

In the state-space model (1), the injected insulin is the manipu-
lated variable. Estimates of the meal effect, physiological variables, and
MET value are also exogenous input disturbances affecting the under-
lying system. The estimated linear dynamics of insulin-glucose varia-
tions is utilized to forecast the future evolution of the state variables
in the formulation of MPC. Since the identified model cannot precisely
forecast the CGM GC over long prediction horizons, the performance
of the closed-loop system has potential to deteriorate. In fully auto-
mated insulin delivery systems, no manual information about distur-
bances (meals, physical activities) is provided, and regulating the GC be-
comes more challenging. In such cases, historical data can be processed
to further improve the robustness of the system by estimating the future
progression of the CGM and also by predicting MET values and meal ef-
fects as exogenous disturbances of the system (1).

As the first objective of this work, unknown disturbances are fore-
casted by using data analytics and ML with historical data. The past data
used in the learning approach are: i) CGM measurements, ii) injected in-
sulin data, iii) estimates of meal effect, iv) physiological variables indi-
cating physical activity, v) PIC estimates, vi) the first and second deriv-
atives of CGM data (computed by fitting a second order polynomial to
the last few CGM values and calculating numerical derivatives) to detect
the effect of disturbances such as meal and exercise, and vi) unmeasured
sensor noise. Assume that N days of previously sampled data are avail-
able (Fig. 2). It is desired to adaptively estimate the current evolving
pattern with the past measurements to obtain the most similar scenar-
ios for the prediction of unknown disturbances with meal and exercise
times and characteristics varying every day, as illustrated in Fig. 3. The
first step for determining the most likely and worst-case scenarios for
unannounced disturbances is to categorize unknown disturbances based
on their similarities. DrLVR (Zhu et al., 2020) is utilized to forecast the
future time-series of the feature variables

T, = | PIC. MET, CGM. CGM, CGM. Meal, Ins.d|

T
where CGM = [CGMI, ,CGMNLS] is the vector of N days historical

CGM data with L; samples per day. Likewise, CGM, CGM, d, Meal, Ins,
PIC, and MET represent the vector of the first and second derivatives of
CGM values, estimated uncertainties, the effect of meal, the amount of
injected insulin, the estimation of PIC, and the MET value, respectively.
Qualitative trend analysis of CGM inferred by the sign of the first and
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Fig. 3. Disturbance prediction from historical data.

second derivatives of CGM convey useful information about the fu-
ture variation of CGM (Samadi et al., 2018; 2017) and consequently,
the potential occurrence of hypoglycemia (GC < 70 mg/dL) or hyper-
glycemia (GC > 180 mg/dL). Hence, the first and second derivatives of
CGM are included in the matrix of Ty.

Although DrLVR is a supervised method to model output variables
from input data, it can also be applied for unsupervised pattern estima-
tion of time-series data. In DrLVR, Markov parameters of an inner Vector
Auto-regressive (VAR) model is extracted to describe the output score
u, € R¥ from the past s > 1 input score vectors as

3

Based on the DrLVR algorithm proposed by Zhu et al. (2020), the first
s steps-ahead samples of the output variables is not predicted and the
algorithm only calculates sample s + 1 of the output variable. For sim-
plicity in notation let £ = [, ..., Z®)] = [Igl\C, ,d]. To obtain a se-
quence of future prediction, we define the lagged matrices of input and
output variables, &, € R **4) and ¢, € R +%4) as:

1 8 T
L=\ T = [Frs o L rnad

1 8 T
Yo=\%) Y| = ¥ Y rwss]
i )
bl 2y
z'(f) )
/) 2 my,+1
) = ’
] ]
x./f’+s N +s+m,—1
) () ()
xm[)_s xm —s+1 mytme—s
0) 0 )
?(/‘) _ m,—s+1 m,—s+2 my,+mp—s+1
mp = . .
0 0 )
z‘NLS—mf NLg—mg+1 z‘NLS

where # =NL;—m, —mg+s—1, My=38ms, and M, =8m, m, is also
the number of past samples used to predict time-series variations of the
feature variables, 27,/ = 1....,8 and my < m, is the prediction horizon.
Define the s-lagged dynamic-order matrices X; € R(>*4,)
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Y, € RW*4) as given by

Xi= Lt Lrian] s i=0,0 s

Yy = [?’L,xﬂs ’?L.H./V] ! @

The formulation of DrLVR is to find autoregressive Markov parameters
B; € R, weight vectors w; € R*7, and ¢, € R*#/ for each latent vari-
able j=1,...,/ that maximize the following constrained objective func-
tion

w*,q*, B* = argmax g"Y Tgp — L |Iwl®

wiq.B .
st {IBlI=1 llgll =1, || 7.8 = 1} ®)

where 7, € R**! denote the vector of input score. The batch-wise pro-
cedure of DrLVR algorithm is given in Appendix C. The decomposed
matrices &, and ¥, are expressed by using extracted score matri-
ces TeRUW+X  eR¥< and loading matrices P e R#* and
€ € R*™ as

x, = z§=1z§f>p<_"” +E=F P +E ©
Y, =Y %0 4 F= 08T +F

where £ € RY+9%#, and F e RW )% represent residual matrices
carrying static correlation between variables & and Y;. At each sam-
pling time k, the estimation of the new input matrix & 1 sew can be cal-
culated as

v, =0%" )

where U, is calculated from 7 ,,, =2 me?l’(g‘r?l’)_l and Eq. (3).
Since scores, loadings, and the matrices of input and output data are be-
ing updated at each sampling time k, DrLVR algorithm needs to be ex-
ecuted repeatedly. As a proper choice for initialization, vectors /3,(;) and
ui,,k,i =1,..../ can be initialized with their values calculated from the
previous time instance. Eq. (7) calculates time-series prediction of out-
put variables over the horizon s ~ 5. The insulin-glucose dynamics of
the body show daily patterns that can be used to enhance the accuracy
and robustness of the prediction. In order to take into account the oc-
currence of extreme disturbances, = 1.645 standard deviations, encom-
passing 5-95 percentile of the interval of times-series samples collected
from the past N; days are calculated as upper and lower bounds (en-
velops) of the predicted feature variables predicted from DrLVR. Consid-
ering these predictions in the objective function improves the robustness
of the controller against worst-case scenarios. Fig.(4) demonstrates the
prediction scheme over the prediction horizon " ~ 5.

Past Future

i’ Initial predicted
sequence of CGM\
Optimal sequence e °
Measured of CGM o\ °
CGM o o H00 000 0 7000 SN

N

Predicted CGM (and other
variables) using DLVR

Optimal sequence of infusion
i.nsul.in ul(k) )

h—— L . i o .
B e e e S S e e L B E
Lblnr—m,. k—1k k+1 ’H""/‘-Vﬂ—”

Fig. 4. The prediction scheme from historical data using DrLVR and its incorporation with
MPC.

2.3. Adaptive learning model predictive control

The PIC-cognizant AL-MPC calculates the optimal insulin injection
rate by employing adaptive weights that modify the penalty weight-
ing matrices in the MPC objective function. It calculates the optimal in-
sulin injection rate over a finite horizon by using the recursively identi-
fied subspace-based dynamic models and three different predictions ob-
tained for the unknown process disturbances by solving the following
quadratic programming problem at each sampling time k

{ " « m/—s
zZ'.,m’ } ’ =
)" f =0

argmin f (Qj,wpkﬂ%b{mi}zng {Zj,i}:ifo_x)

7ZeZ my=s
me#
21 = A4z + Bym; + dj;
q;; = Ciz;; + Dym;
Zjo = Xk
m"" <'m, < m"e
Jio = = i
Z;J,-ICJmn < sz)]C < zﬁC,max
St G AIC _ F1Ces ®
Jit Jit It

PIC,max __
100 = (B o+ By) % (1 <+

Z;?!C,min — (ﬂmk + ﬂf) X (a}t;in X qf,i + b]’,”’ii")
[C des
21O = (B By) x (ades x @y + b

incorporated with the objective function

my=s

* ks =X I (4 - 1) @ (a5 — 1)

‘ 9
PICp oPIC
+ <mi - mbasal) '%k <mi - mbasal) + ej’,‘ Pkej’i
where Z;; € R™ and 4+ € R represent the estimated state variables and
the output of the model, respectively. For the prediction/control horizon
Mg =S, m; €R represents the constrained input variable, which takes
values in a nonempty convex set 4 = {mk ER: m;‘_}(i“ <m; < mj"}fx}
with mj'-flk'" €R and m,"}f * €R denote the lower and upper limits on the
manipulated variable, respectively. r; is the target set-point, and mb”,f”’
is the patient-specified rate of basal insulin. The nonempty convex set
: . . i min N max ny
Z with £ := {zj,k € R™ : zj‘.f‘,(‘“ <z < zj_‘t}{“} . 2" €R™ and " € R
represent the lower and upper bounds on state variables, respectively,
- - - IC ]
with one of the state variables as the estimated PIC (Zf + ) that is con-

strained by the PIC limits (Zf,fc’max’ Zf,fc'mms and Zf,ic’des) where the Z]P ,ic’des
is the desired PIC value. The number of state variables in the inte-
grated glycemic model (2) is ny, %« provides an initialization of the vec-
tor of state variables, @;x > 0 is a positive semi-definite symmetric ma-
trix utilized to penalize the deviations of the outputs from their desired
set-point, and #; and Py are strictly positive definite symmetric matrix
to penalize manipulated variables and the PIC errors, respectively. At
each iteration, the quadratic programming problem described by (8) is
solved, and ¥ -= My which is the optimal solution implemented to in-
ject insulin over the current control horizon with the MPC computation
repeated at next sampling time using new CGM data, energy expendi-
ture, updated state variables, and newly computed penalty weights of
the objective function.

3. Simulation results

The simulator mGIPsim is utilized to assess the performance of
AL-MPC (Rashid et al., 2019). A scenario for a period of 30 days with
varying times and amounts of daily meals and physical activity dura-
tions and intensities are used. Tables 1 and 2 provide the ranges in
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Table 1
Meal scenario for 30-days CL experiment using mGIPsim.

Meal Range for values
Time Amount (g)
Breakfast [06: 00, 07: 00] [40, 60]
Lunch [12: 00, 13: 00] [40, 60]
Dinner [18: 00, 19: 00] [40, 60]
Table 2
Exercise scenario for 30-days CL experiment using mGIPsim.
Exercise Range for values
Time Duration (min) Power
Bicycling [10: 00, 11: 00] [30, 60] [50, 90]
Bicycling [16: 00, 17: 00] [30, 60] [50, 90]

mealtimes and its amounts, and exercise times, durations, and inten-
sities. Daily values are randomly selected from these ranges. The con-
troller set-point is set to a GC of 110 mg/dL except during exercise
when it takes the value of 160 mg/dL. Aerobic activities with a sta-
tionary bicycle are considered for testing the mAP. The meal and phys-
ical activity information are not manually entered into the mAP and
are predicted only from “sensor” information generated by mGIPsim.
The mAP controller is a fully automated system, rather than a hybrid
closed-loop AP, designed to regulate the GC in the presence of sig-
nificant unknown disturbances such as unannounced meals and physi-
cal activities occurring at varying times and having characteristics that
change randomly. The energy expenditure values, expressed as MET
variations, are computed by mGIPsim and utilized as an input variable.

Table 3
CL simulation results for AL-MPC whole days.

The calculated EE values summarize the physiological signal variations
caused by physical activities.

Table 3 summarizes the quantitative evaluation of the closed-loop
(CL) operation based on the proposed algorithms and results are com-
pared with regular MPC without learning and with two different learn-
ing techniques used for estimating significant disturbances and the fu-
ture evolution of controlled variable. The simulation results are also
repeated for dynamic PCA (DiPCA) (Dong & Qin, 2018) with kNN
(DiPCA-kNN) and k-means hyperspherical clustering techniques for
comparison. These simulation studies are intended to illustrate that the
mAP incorporated with evolution and DrLVR learning method is robust
and reliable in learning and recognizing the patients’ habits and daily
activities. The mean percentage of time spent in the target ranges of
[70,140] mg/dL and [70,180] mg/dL are 59.2% and 84.4% for all sub-
jects. No hypoglycemic event was detected as the GC never dropped be-
low 70 mg/dL. The forecasted hypoglycemic episodes inform the subject
to consume rescue carbohydrates about 20 minutes before the potential
hypoglycemic event. The mean of the minimum and maximum observed
GC values over all clinical experiments during the simulation are 80.2
and 235.1 mg/dL, respectively. In general, the simulation results show
that the proposed mAP with AL-MPC is capable of controlling GC effi-
ciently in the presence of significant unannounced disturbances. Regard-
less of the changing timing and amounts of carbohydrates and physi-
cal activity specifications, the proposed mAP can mitigate the effects of
meals and exercise, prevent severe hypoglycemic events, and decrease
the number and duration of hyperglycemic events.

4. Discussion

CL simulation results for all subjects for the last day of simulations
are summarized in Fig. 5. As can be seen, in comparison to the adap-

Subject Percent of time in range GC Statistics
<70 [70, 140] [70, 180] > 180 > 250 Mean SD Min Max

S1 0 51.7 81.3 17.7 0 143.9 33.1 92.2 236.6
S2 0 60.2 86.8 13.11 0 138.0 32.0 72.8 226.5
S3 0 65.1 87.2 12.8 0 133.7 32.0 85.6 225.7
S4 0 65.2 89.7 10.3 0 133.2 31.5 73.5 230.5
S5 0 68.5 90.9 9.1 0 129.1 30.8 70.4 225.7
S6 0 60 93.8 6.2 0 135.7 25.4 76.9 219.4
s7 0 66.6 88.2 11.8 0 132.9 31.5 79.6 234.5
S8 0 64.8 87.8 12.2 0 133.4 31.4 86.2 232.1
S9 0 46.5 73.7 26.3 0.4 153.2 39.0 83.6 264.1
S10 0 67.1 86.7 13.3 0 133.1 33.3 72.9 237.2
S11 0 57.8 86.4 13.6 0 138.5 32.8 73.2 233.9
S12 0 58.2 84.5 15.5 0 140.4 32.7 78.7 232.6
S13 0 50.4 77.7 22.3 0.3 148.6 36.3 81.7 271.7
S14 0 58.7 84.6 15.4 0 138.9 34.7 74.1 240.6
S15 0 60.6 86.6 13.4 0 139.9 29.6 92.3 228.5
S16 0 69.9 92.6 7.4 0 130.5 27.1 78.8 213.3
S17 0 60.8 81.9 18.1 0 138.3 36.1 72.8 237
S18 0 46.5 64.8 35.2 0.2 157.1 43.9 88.3 253.8
S19 0 57.4 91.9 8.1 0 138.1 26.6 90.6 217.7
$20 0 49.4 72.4 27.6 0 150.3 38.7 84.0 240.8
Average(AL-MPC) 0 59.2 84.4 15.5 0.04 139.3 32.9 80.2 235.1
Average(k-means) Hajizadeh et al. (2020 (in press) 0 55.1 78.2 21.8 0.1 145.3 36.2 82.0 244.0
Average(DiPCA- k-NN) 0.0017 59.8 83.9 16.0 0.05 139.3 33.4 79.4 236.4
Average(A-MPC) 0.0035 59.4 82.5 17.5 0.04 140.5 34.2 80.8 232.0
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Fig. 5. CL results for all subjects on day 30.

tive mAP with an A-MPC that lacks learning features, the mAP with
AL-MPC is able to keep the GC values in a higher range during phys-
ical activity. Hypoglycemia prevention is performed by considering a
higher controller set-point prior to observing the effect of physical ac-
tivity, which is detected by forecasting the MET values. A compar-
ison of the averages reported in Tables 3 and 4 indicates that the
AL-MPC is well-adapted to glucose dynamics as it can better maintain
the GC within the desired range without utilizing excessive insulin. By
the long-window prediction horizon, AL-MPC can take into account the
time-delay prandial GC response and also GC drop during physical ac-
tivity.

Table 4

The number of predicted hypoglycemic events (# PH) and inhibitions by rescue carbohy-
drates for the whole simulation period (30 days) and the average of total daily injected
insulin (TDI) (U) with AL-MPC (results for A-MPC without learning in parentheses).

Subject # ph TDI (U)
s1 68 (110) 39.5 (41.7)
S2 109 (122) 38.6 (39.3)
S3 83 (109) 334 (34.1)
S4 90 (97) 34.0 34.2)
S5 123 (126) 29.4 (29.1)
s6 82 (106) 41.5 (42.7)
S7 66 (73) 42.0 (42.0)
S8 79 (104) 31.3 (32.1)
59 58 (55) 63.3 (62.7)
S10 73 (81) 28.8 (28.5)
S11 86 (90) 32.8 (31.6)
S12 75 (101) 26.6 (27.5)
S13 29 (28) 49.4 (47.8)
S14 114 (113) 30.1 (29.3)
S15 30 (57) 44.3 (45.7)
S16 100 (124) 44.5 (45.0)
S17 114 (120) 27.0 (27.3)
S18 19 (55) 50.6 (53.5)
S19 75 (106) 46.6 (48.5)
$20 30 (58) 45.7 (47.1)
Average 75 (92) 39.02 (39.5)

Thirty days of CL simulation results for a randomly chosen subject is
displayed in Fig. 6. It illustrates that mAP integrated with learning fea-
ture enhances the reliability and safety of the insulin delivery system,
especially after carbohydrate consumption and during physical activity.
In general, the AL-mAP algorithm can regulate the CGM with the min-
imum need for hypoglycemia considerations. Table 4 shows the aver-
age reduction in predicted hypoglycemic episodes necessitating rescue
carbohydrates from 92 to 75 and total daily injected insulin from 39.5
to 39.0. The lower number of hypoglycemic events indicates that the
controller action (insulin doses) calculated is safer, and the controller
is more conservative compared to mAP without learning features. A re-
duction in the value of ph and an increase in the duration of normal
glycemic periods (GC 70-180 mg/dL) shows that the controller becomes
more reliable in keeping the GC closer to the set-point with a minimum
risk of hyper- and hypoglycemic events.

5. Conclusions

An adaptive MPC with learning capability is proposed for control-
ling uncertain nonlinear processes with time-varying characteristics. As
a case study, the glucose-insulin dynamics of the human body is uti-
lized to test the efficiency and effectiveness of the AL-MPC algorithm.
The proposed control framework incorporates uncertainty quantifica-
tion, disturbance prediction, adaptive learning, and recursive subspace
identification. DrLVR technique can detect patterns in historical data
to improve the performance of MPC. Simulation results show that the
learning technique employed in the formulation of the MPC controller
can significantly improve the regulation of glucose concentrations with-
out causing undesired outcomes of very high or very low glucose levels.
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Appendix A. - Recursive subspace identification algorithm

In what follows, the summarized description of PBSID proposed by
Houtzager, van Wingerden, and Verhaegen (2011) is briefly ex-
plained. The objective is to identify the controllable and observable part
of single input single output (% = 1.7, = 1) dynamic system (1) and also
calculate the optimal Kalman gain K. Let define the output lagged vec-
tors, Jk-m, € R"” and multi-step ahead vectors Ji+m, € R" as

T

Yi-m, = [yk—m > Vk—m+1 ~~~’}’k—17]
i P P P A

YVicwmp = [yk’yk+15 7yk+m/—1]

similarly, the corresponding input lagged vectors, %-m, € R"and
multi-step ahead vectors #+m, € R"™ can be defined. Generating the past
estimated variables ¥jj_j./ =k,....k—m, and the future output vari-
ables Pk+m, from state observer Eq. (2) gives

~m,

X elk—1 = xk—mp|k—mp +guk_mp + ‘%yk—mp

R + i, + (1 -7 )? ety |y (A2)

+y k+m/|k+m/

|k—mp

¥ k+my

where J =4 _kC and B =B _ KD and ¥ o — €R™ g the lagged

vector of estimation error defined similar to Eq. (A.1). The extended
controlability matrices @ ¢ R”*"» and % < R"*" and the extended
observability matrix T € R”*"~ are defined by

=7 "'3.775. . AB.B

= |7k Ak, K K] (A.3)
~ ~ ~moe11T

P [C,CA,...,CA’”f 1]

The columns of lower rectangular matrices Cec R">"r and ¢ e R™¥"
are given as

12:00 15:00 18:00 21:00
Time
T
€,=0,....0,0,CB,CAB.c1" B
~—_— —
i—1 f=i-1
T (A.4)

#,=|0,...,0,1, ,~CK,-CdK,-cA" "k
[N J YN

! _

i1 i1

As stated in Houtzager et al. (2011), we assume that the asymptotic
stable matrix 4 satisfies nilpotency condition assumption (Chiuso &
Picci, 2005), where 7~ 0,/2n,. Therefore, the first equation of (A.2)
can be rearranged to

Rt L Uy, + EY ke |-, (A.5)
The formulation of the PBSID is established through employing a vector

autoregressive with exogenous input (VARX) model for one step ahead
prediction of k-1 as

mp p
k=1 = 292’_),-%—;' + Zefﬂiyk_i (A.6)
i=0 i=1
where the VARX model parameters to be estimated are
() (1) (] ()]
oA [0 ,...,0k_mp,0k_l,...,ok_mp] A7)

as it has been proven in Chiuso and Picci (2005), the following equa-
tions hold for the unknown parameters of the vector © as detailed in

g D, B if
k=i CA™=I='B, if
60" =CA"IK

(A.8)

As shown in Houtzager et al. (2011), two multiplied matrices T* x &
and T x & is calculated from the estimated Markov parameters (A.7) as:
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() (1) () (u)
0 0 Hk—f o Gk—mp+l
(u) (u) (1)
~5 0 07 o O gk—mp+2
rz= S . (A.9)
: o @ g
0 e 0 Oy o ek—mp+mf

similarly, T x % can be calculated from the lagged matrix stacked with
)

parameters 9,(:/), ...,9k_mp +1- As an option, Singular Value Decomposi-

tion(SVD) can be applied to calculate Xx—1 in Eq. (A.5). In recursive
identification, modifying SVD factorization can be rather complicated
and inefficient. Hence, most recursive system identification extract ap-
proximate low-rank, (A.5) as

Thpp-1 = Sl (Fgﬁk—mp +EZT -, ) (A.10)

where S, € R (M) is the selection matrix and it can be estimated us-

ing the gradient approach suggested in Oku and Kimura (2002). Let
T T

o = Q,{ ,ﬁ,{ and y, = [&‘Z_l,ﬁ,{_l,ii_”k_l] be the basis matrices and

G)k(y) = [Ck,Dk]T, @Z") = [AkBkKk]T be the state-space parameters matri-

ces. Then, at each time instance k two least squares problems for the es-

timation of Ay, By, Ck, Dy, and Ky need to be solved over the past batch
of the input-output data.

o). . ~ W . |12
OIS argzr;lnzi=k7mp”yi -0 ¢; |
put
k
A.11)
x)  ._ . ok ~ () 2 (.
O o .—arg(rr:znzi=k7mp‘| =0 1//1-” .
o

k

The algorithm in Appendix B is proposed by Houtzager et al. (2011)
to recursively estimate the state variables and extracted state-space ma-
trices from the solution of the above optimization problems.

Appendix B. - Recursive predictor-based subspace identification of
the state-space matrices

Input Design Parameters: Input parameters: m,, my, s.t. mg < my,
0 < ny, scalars 0 < §; 53 and forgetting factors 0 < A 23 < 1.Initial-
ization: Initialize the covariance error matrices P-1 = (1/ 51) [mp+1=
M_, = (I"ﬁnu/‘SZ)’ and N_; = (lnx+nu+ny/53).Updating Markov Para-

-1

meters: P, = (1/4,) Py_, (1 — (A + (P,{Pk_ltﬂk) )>< (pZP,H,
O = ©;_; + (3 — ©;_19;) @] Py.Estimating State Variables:. Calculate
l:k§k and l:k%  from the updated Markov parameters © and con-
struct %k by using (A.4). Update the selection matrix Sy as shown
in Yang (1995):S,(T = S,{T_1 + (z - S,{T_ISk,lzk) Z,{Ps,k. or employ the effi-
cient propagator approach proposed by Mercére, Bako, and Lecéuche
(2008) to design a stationary matrix S.

Estimate state

A ot N foedl o —
Rppe—t =S¥, <3’uk_mp + .%’yk_mp

variables from

‘k_mp>Updating State-Space Matri-

ces Cp, DMy = (1/ ) My_y = (1/2y) My_ ¢y _1X.
(/121+¢,Z_1Mk—1¢k—1)_l¢;_1Mk—1-

@}{”) = G)gj ¥ (yk_| - @glqﬁk_l) ¢!, M,.Updating state-space matrices
Ak, By, K Ni = (1/23) Nzt = (1/23) Ny X,
(MBI +w] Neiwe )_lllf;{_lNk—ls-@g) =0, + (xk -0 vt ) wi N

Appendix C. — Dynamic latent variable regression

The following algorithm is suggested by Zhu et al. (2020) for es-
tablishing correlation between the each samples of input matrix &, and
s + 1 ahead samples of the output matrix ¥ .

Updating the Data: At the current sample time &,k =0,1,2 ... drop
the last row (or the last Ly > 1 samples) of the matrix & and augment
newly L, recorded samples to the matrix Z to construct lagged matrices
X; and Ys.Normalization: Apply recursive mean and variance formula to
update the average and standard deviation of updated data-set and to
zero-center and scale matrices &; and ¥ .Initialization:If k = 0 : Ini-
tialize f{) with ﬁ (L,....1]1 and uﬁ% with a random column of Y.

Otherwise: Initialize ”S;cl =1,../ and ﬂf:) with the i — th column of
Us4-1 and ﬂ;fi], respectively.Calculating Markov Parameters: Construct
Xy = i oBi Ko

Extract Uy, Sp, and Vj from singular value decomposition O]f Xp.

Calculate the weight vector w® = Vs (S;Sﬂ + il ) S; UﬂTui’;{

)
(1% -
Let () = 2, w® and T, = [t 8y, ... . 1)
Calculate the regularization factor «,, = K”W(i)“z and find the eigen-

W) =

vector q corresponding to the maximum eigenvalue of
-1
YIT (17T, + ;gwl) TTY,. _ 1 ‘
Update ”(3{ =Y,q and p = (I, +x,0)” T7u"). and normalize it

0
W _ b
by b, = 1.6
1] L
Iterate previous steps until ¥ ; and ﬂ;{') converge and at each itera-
tion, check the relative error of ﬁ;{').
Rescale ﬂ,(cl) to

; “lr G . .
o = (TI'T, + x,I) " T!u!') Deflation: Deflate matrices & and ¥ as

calculate  inner  parameter o® as

70

p . ) 2,0 n _ ¥
W = 1 00 = Gl = oy
Us,k = [Us,k’ ”8;{]

2 =[2.p9]

V=W )

% =[8.c]

lA]S = [0s’a§i)]

g = 7,4

L, =2, - 1OpdT

?s = ?5 - ﬁsc(i)T

Repeat the procedure starting from initialization step until all I latent
variables are extracted.
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